Errata for Foundations of Signal Processing

May 16, 2020

Page	Position	Current	Corrected
Chapt	er 2		
21	Example 2.4	that do no equal	that do not equal
27	Definition 2.9	, with equality if and only if $y = \alpha x$	remove (holds for Hilbert space norms)
28	Example 2.10(i)	$ x = x_0 ^2 + 5 x_1 ^2$	$ x = \sqrt{ x_0 ^2 + 5 x_1 ^2}$
36	last line	sequence converges to x	sequence converges to v
52	(ii) Orthogonality, 3rd line	since x and φ are in S	since \hat{x} and φ are in S
59	2nd line above Theorem 2.30	idempotent, it is orthogonal.	idempotent, it is self-adjoint.
64 195	equation (2.76)	$E[y_1^*y_2^*]$	$E[y_1y_2^*]$
125 139	Example 2.61 end of 6th line	$n = 1, 2, \ldots, N,$	n = 1, 2,, N-1,
Chapt	er 3		
191	sentence containing (3.24a)	Hermitian matrix (see (2.239a))	Hermitian sequence of matrices
101	sentence containing (3.24b)	symmetric matrix	symmetric sequence of matrices
206	3rd line of Example 3.11	$a_0 = -1$	$a_1 = -1$
210	Figure 3.6(f)	h_{-n+1}	h_{-n+3}
213	equation below (3.72b)	. at the end of the equation	, at the end of the equation
217	3rd line below (3.77)	is is	is
222	Moments entry of Table 3.4	$(-j)^k \frac{\partial X(e^{j\omega})}{\partial \omega}\Big _{\omega=0}$	$j^k \frac{\partial^k X(e^{j\omega})}{\partial \omega^k} \bigg _{\omega=0}$
223	equation (3.95a)	$(-j)^k \frac{\partial X(e^{j\omega})}{\partial \omega}\Big _{\omega=0}$	$j^k \frac{\partial^k X(e^{j\omega})}{\partial \omega^k} \bigg _{\omega=0}^{\omega=0}$
	equation $(3.95c)$	$-j\frac{\partial X(e^{j\omega})}{\partial \omega}\Big _{\omega=0}$	$j\frac{\partial X(e^{j\omega})}{\partial \omega}\Big _{\omega=0}$
226	equation (3.107) , 2nd line	$x_n e^{j\omega n}$	$x_n e^{-j\omega n}$
	equation (3.107) , 2nd line	$x_k e^{j\omega k}$	$x_k e^{-j\omega k}$
	equation (3.107) , 3rd line (twice)	$e^{j\omega(n-k)}$	$e^{j\omega(k-n)}$
	equation (3.107) , 4th line	δ_{n-k}	δ_{k-n}
227	3rd line	DTFT of x_n^* is $X^*(e^{j\omega})$	DTFT of x_n^* is $X^*(e^{-j\omega})$
241	equation (3.138) and Table 3.6 (p. 243) equation (3.139) and Table 3.6 (p. 243)	$(\operatorname{ROC}_x)^{1/N}$ $(\operatorname{ROC}_x)^N$	$\supset (\operatorname{ROC}_x)^N$ $(\operatorname{ROC}_x)^{1/N}$
242	equation (3.143b)	X(0)	X(1)
244	derivation in Example 3.24	$\sum_{m \in \mathbb{Z}} h_n x_{k-n} = \sum_{m \in \mathbb{N}} \alpha^n$	$\sum_{k \in \mathbb{Z}} h_k x_{n-k} = \sum_{k \in \mathbb{N}} \alpha^k$
251	relation (3.156b)	, at the end	. at the end
268	3rd expression from the top	$\frac{1}{2}\left(\frac{1}{1-\frac{1}{2}}+\frac{1}{1-\frac{1}{2}}\right)$	$\frac{1}{2}\left(\frac{1}{1-\frac{1}{2}}+\frac{1}{1-\frac{1}{2}}\right)$
271	Example 3.32, last line	when followed by $U_{2,a}$ leads	when followed by U_2 , leads
291	7th line below (3.239)	$+b_{0}^{*}b_{1}z^{-1}\delta_{k-1}$	$+b_0^*b_1\delta_{k-1}$
300	between $(3.258a)$ and $(3.258b)$	time lag k	time index k
321	Example 3.48, middle line	$\det H(z) = (1+z)^2 - z(2+z)$	$\det H(z) = (1+z)^2 - z(2+z)$
Chapt	er 4		
354	equation (4.28)	$\max(1_{\{-\infty,\dots,t\}} x)$	$\max(1_{(-\infty,t]}x)$
359	3rd line below (4.37)	is is	is
366	Table 4.1, scaling in time and frequency Table 4.1, shifted Dirac delta function	$(1/lpha)X(\omega/lpha) \ e^{-j\omega_0 t}$	$ \begin{array}{l} (1/ \alpha)X(\omega/\alpha) \\ e^{-j\omega t_0} \end{array} $
367	scaling in time and frequency (twice)	$(1/\alpha)$	$(1/ \alpha)$
383	6th line above Theorem 4.14	where $\widetilde{\varphi} = e^{j(2\pi/T)kt}$	where $\widetilde{\varphi}_k(t) = e^{j(2\pi/T)kt}$
401	labels on lower plot of Figure $4.14(b)$	$-2\pi/T$ $2\pi/T$	-1 1
Chapt	er 6		
561	equation (6.75)	$\alpha_k^{(1)} = \sum^k \alpha_k$	$\alpha_k^{(1)} = \sum_{k=1}^k \alpha_m$
606	equation (P6.1-1)	$ \begin{array}{c} m = -\infty \\ (t^2 - 1) \end{array} $	$m = -\infty$ $(1 - t^2)$
Chapt	er 7		
641	equation $(7.27c)$ and the line below	$g^{(\ell-1)}$ (twice) and $\varphi^{(N^{\ell-1})}$	$g^{(\ell-1)}$ and $\varphi^{(N^{\ell-1})}$
Refere	ences		
676	[30] G. B. Folland.	A Course in Abstract Harmonic Analysis. CRC Press, London	Introduction to Partial Differential Equations. Princeton University Press, second edition