| Page | Position | Current | Corrected |
| :---: | :---: | :---: | :---: |
| Chapter 2 |  |  |  |
| 21 | Example 2.4 | that do no equal | that do not equal |
| 27 | Definition 2.9 | , with equality if and only if $y=\alpha x$ | remove (holds for Hilbert space norms) |
| 28 | Example 2.10(i) | $\\|x\\|=\left\|x_{0}\right\|^{2}+5\left\|x_{1}\right\|^{2}$ | $\\|x\\|=\sqrt{\left\|x_{0}\right\|^{2}+5\left\|x_{1}\right\|^{2}}$ |
| 36 | last line | sequence converges to $x$ | sequence converges to $v$ |
| 52 | (ii) Orthogonality, 3rd line | since $x$ and $\varphi$ are in $S$ | since $\widehat{x}$ and $\varphi$ are in $S$ |
| 59 | 2nd line above Theorem 2.30 | idempotent, it is orthogonal. | idempotent, it is self-adjoint. |
| 64 | equation (2.76) | $\mathrm{E}\left[\mathrm{y}_{1}^{*} \mathrm{y}_{2}^{*}\right.$ ] | $\mathrm{E}\left[\mathrm{y}_{1} \mathrm{y}_{2}^{*}\right]$ |
| 125 | Example 2.61 | $n=1,2, \ldots, N$, | $n=1,2, \ldots, N-1$, |
| 139 | end of 6th line | such that. | such that, |
| Chapter 3 |  |  |  |
| 191 | sentence containing (3.24a) <br> sentence containing (3.24b) | Hermitian matrix (see (2.239a)) symmetric matrix | Hermitian sequence of matrices symmetric sequence of matrices |
| 206 | 3rd line of Example 3.11 | $a_{0}=-1$ | $a_{1}=-1$ |
| 210 | Figure 3.6(f) | $h_{-n+1}$ | $h_{-n+3}$ |
| 213 | equation below (3.72b) | . at the end of the equation | , at the end of the equation |
| 217 | 3rd line below (3.77) | is is | is |
| 222 | Moments entry of Table 3.4 | $\left.(-j)^{k} \frac{\partial X\left(e^{j \omega}\right)}{\partial \omega}\right\|_{\omega=0}$ | $\left.j^{k} \frac{\partial^{k} X\left(e^{j \omega}\right)}{\partial \omega^{k}}\right\|_{\omega=0}$ |
| 223 | equation (3.95a) | $\left.(-j)^{k} \frac{\partial X\left(e^{j \omega}\right)}{\partial \omega}\right\|_{\omega=0}$ | $\left.j^{k} \frac{\partial^{k} X\left(e^{j \omega}\right)}{\partial \omega^{k}}\right\|_{\omega=0}$ |
|  | equation (3.95c) | $-\left.j \frac{\partial X\left(e^{j \omega}\right)}{\partial \omega}\right\|_{\omega=0}$ | $\left.j \frac{\partial X\left(e^{j \omega}\right)}{\partial \omega}\right\|_{\omega=0}$ |
| 226 | equation (3.107), 2nd line | $x_{n} e^{j \omega n}$ | $x_{n} e^{-j \omega n}$ |
|  | equation (3.107), 2nd line | $x_{k} e^{j \omega k}$ | $x_{k} e^{-j \omega k}$ |
|  | equation (3.107), 3rd line (twice) | $e^{j \omega(n-k)}$ | $e^{j \omega(k-n)}$ |
|  | equation (3.107), 4th line | $\delta_{n-k}$ | $\delta_{k-n}$ |
| 227 | 3rd line | DTFT of $x_{n}^{*}$ is $X^{*}\left(e^{j \omega}\right)$ | DTFT of $x_{n}^{*}$ is $X^{*}\left(e^{-j \omega}\right)$ |
| 241 | equation (3.138) and Table 3.6 (p. 243) equation (3.139) and Table 3.6 (p. 243) | $\begin{aligned} & \left(\operatorname{ROC}_{x}\right)^{1 / N} \\ & \left(\operatorname{ROC}_{x}\right)^{N} \end{aligned}$ | $\begin{aligned} & \supset\left(\operatorname{ROC}_{x}\right)^{N} \\ & \left(\operatorname{ROC}_{x}\right)^{1 / N} \end{aligned}$ |
| 242 | equation (3.143b) | $X(0)$ | $X(1)$ |
| 244 | derivation in Example 3.24 | $\sum_{n \in \mathbb{Z}} h_{n} x_{k-n}=\sum_{n \in \mathbb{N}} \alpha^{n}$ | $\sum_{k \in \mathbb{Z}} h_{k} x_{n-k}=\sum_{k \in \mathbb{N}} \alpha^{k}$ |
| 251 | relation (3.156b) | , at the end | . at the end |
| 268 | 3rd expression from the top | $\frac{1}{2}\left(\frac{1}{1-\alpha z^{1 / 2}}+\frac{1}{1+\alpha z^{-1 / 2}}\right)$ | $\frac{1}{2}\left(\frac{1}{1-\alpha z^{-1 / 2}}+\frac{1}{1+\alpha z^{-1 / 2}}\right)$ |
| 271 | Example 3.32, last line | when followed by $U_{2}$, a leads | when followed by $U_{2}$, leads |
| 291 | 7th line below (3.239) | $+b_{0}^{*} b_{1} z^{-1} \delta_{k-1}$ | $+b_{0}^{*} b_{1} \delta_{k-1}$ |
| 300 | between (3.258a) and (3.258b) | time lag $k$ | time index $k$ |
| 321 | Example 3.48, middle line | $\operatorname{det} H(z)=(1+z) 2-z(2+z)$ | $\operatorname{det} H(z)=(1+z)^{2}-z(2+z)$ |
| Chapter 4 |  |  |  |
| 354 | equation (4.28) | $\max \left(1_{\{-\infty, \ldots, t\}} x\right)$ | $\max \left(1_{(-\infty, t]} x\right)$ |
| 359 | 3rd line below (4.37) | is is | is |
| 366 | Table 4.1, scaling in time and frequency | $(1 / \alpha) X(\omega / \alpha)$ | $(1 /\|\alpha\|) X(\omega / \alpha)$ |
|  | Table 4.1, shifted Dirac delta function | $e^{-j \omega_{0} t}$ | $e^{-j \omega t_{0}}$ |
| 367 | scaling in time and frequency (twice) | (1/ $\alpha$ ) | (1/\| $\alpha \mid$ ) |
| 383 | 6th line above Theorem 4.14 | where $\widetilde{\varphi}=e^{j(2 \pi / T) k t}$ | where $\widetilde{\varphi}_{k}(t)=e^{j(2 \pi / T) k t}$ |
| 401 | labels on lower plot of Figure 4.14(b) | $-2 \pi / T \quad 2 \pi / T$ | -1 1 |

Chapter 6

| 561 | equation (6.75) | $\alpha_{k}^{(1)}=\sum_{m=-\infty}^{k} \alpha_{k}$ |
| :--- | :--- | :--- |
| 606 | equation (P6.1-1) | $\left(t^{2}-1\right)$ |$\alpha_{k}^{(1)}=\sum_{m=-\infty}^{k} \alpha_{m}$

Chapter 7
641 equation (7.27c) and the line below $\left.\quad g^{(\ell-1}\right)$ (twice) and $\varphi^{\left(N^{\ell-1}\right)} \quad g^{(\ell-1)}$ and $\varphi^{\left(N^{\ell-1}\right)}$

## References

676 [30] G. B. Folland.

A Course in Abstract Harmonic
Analysis. CRC Press, London

Introduction to Partial Differential Equations. Princeton University Press, second edition

